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Example: COVID-19 Control
• Formally defined optimal control in the risk networks: 𝑥𝑥 𝑘𝑘 + 1 = 𝐹𝐹 𝑥𝑥 𝑘𝑘 + 𝐺𝐺 𝑥𝑥 𝑘𝑘 , 𝐸𝐸 + 𝐵𝐵𝐵𝐵

• Established a function of controllability index and corresponding optimal energy and conditions for 
nonnegative optimal control

• Provided a universal methodology of applying the LQR control in real world networked systems

• Qualitative analysis of COVID-19 governmental policies
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Optimize functions

3

Low cost of intermediate states

Failures, Dynamics, Evolution and Control of the Global Risk Network By World 
Economic Forum



Contributions:
• Formally defined optimal control in the risk networks: 

 𝑥𝑥 𝑘𝑘 + 1 = 𝐹𝐹 𝑥𝑥 𝑘𝑘 + 𝐺𝐺 𝑥𝑥 𝑘𝑘 , 𝐸𝐸 + 𝐵𝐵𝐵𝐵

• Established a function of controllability index and corresponding optimal energy:
• Controllability index 𝜁𝜁 = 𝑁𝑁/𝑁𝑁𝐷𝐷
• Upper bound of optimal energy 𝐽𝐽𝜖𝜖 = 𝑒𝑒10𝑁𝑁/𝑁𝑁𝐷𝐷

• Established condition for nonnegative optimal control: 𝑁𝑁 = 𝑁𝑁𝐷𝐷

• Quantitively analyzed the tradeoffs between control and state costs in Reactive and 
Proactive phases:

• Reactive: cost is almost linearly related to the controlled number of active risks 
• Proactive: cost is proportional to the potential risk activities 
• Prevention is better than Governance: the cost in the proactive phase is much smaller than that 

in the reactive phase 
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Contributions:
• Provided a universal methodology of applying the LQR control in real world networked 

systems:
• Built a flight-delay network with five million flights record in 2015.
• Built a delay cost matrix 𝑄𝑄 and aircraft cost matrix 𝑅𝑅 according to official statistic data

• Provided significant results on flights control:
• LQR control saves around 90% time for the customer and 70% cost for the society on average. 
• In over 5000 unique flights, almost every single one benefits from the LQR control.

• Provided significant results on airports control:
• The small airport in the inland area benefits more than large international one in the coastal area 
• In over 300 airports, almost every single one benefits from the LQR control.

• Discovered that the airline ranking by simulated steady states in the CARP model are highly 
(above 0.8) correlated with Airline Quality Ranking.

• Submitted to:
• X. Niu, C. Jiang, J. Gao, G. Korniss, and B. K. Szymanski. Data-driven control of networked risks with 

minimal cost. Nature Communications, 2019
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Questions?
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Power laws and scale-free networks

Section 2     
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Nodes: WWW documents 
Links:   URL links

Over 3 billion documents

ROBOT: collects all URL’s 
found in a document and 
follows them recursively

R. Albert, H. Jeong, A-L Barabasi, Nature, 401 130 (1999).

WORLD WIDE WEB
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Discrete vs. Continuum formalism

Discrete Formalism 
As node degrees are always positive integers, the 
discrete formalism captures the probability  that 

a node has exactly  k links:

Continuum Formalism 
In analytical calculations it is often convenient to 
assume that the degrees can take up any positive 
real value:

INTERPRETATION:
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80/20 RULE     

Vilfredo Federico Damaso Pareto (1848 – 1923), Italian economist, political scientist and philosopher, 
who had important contributions to our understanding of income distribution and to the analysis of individuals choices. 
A number of fundamental principles are named after him, like Pareto efficiency, Pareto distribution (another name for a 
power-law distribution), the Pareto principle (or 80/20 law).



The difference between a power law and an exponential distribution
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The difference between a power law and an exponential distribution

Let us use the WWW to illustrate the properties of the high-k regime. 
The probability to have a node with k~100  is 

•About                             in a Poisson distribution 

•About                            if  pk follows a power law. 

•Consequently, if the WWW were to be a random network, according to the 
Poisson prediction we would expect 10-18    k>100 degree nodes, or none.

•For a power law degree distribution, we expect about                        k>100 degree 
nodes
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Finite scale-free networks
All real networks are finite  let us explore its consequences. 
 We have an expected maximum degree, kmax

Estimating kmax 

Why: the probability to have a node larger than kmax should not 
exceed the prob. to have one node, i.e. 1/N fraction of all 
nodes 

The size of the biggest hub
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Finite scale-free networksThe size of the biggest hub
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Finite scale-free networks

Expected maximum degree, kmax

•kmax, increases with the size of the network 
the larger a system is, the larger its biggest hub

•For γ>2  kmax increases slower than N
the largest hub will contain a decreasing fraction of links as N increases.

•For γ=2     kmax~N. 
 The size of the biggest hub is O(N)

•For γ<2  kmax increases faster than N: condensation phenomena
  the largest hub will grab an increasing fraction of links. Anomaly!
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Finite scale-free networksThe size of the largest hub
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The meaning of scale-free

Section 4     
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Definition:

Networks with a power law tail in their degree distribution are called 
‘scale-free networks’ 

Where does the name come from?

Critical Phenomena and scale-invariance
(a detour)

Slides after Dante R. Chialvo 

Scale-free networks: Definition
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Phase transitions in complex systems I: Magnetism

T = 0.99 Tc T = 0.999 Tc

ξ ξ

T = Tc T = 1.5 Tc T = 2 Tc
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• Correlation length diverges at the critical point: the 
whole system is correlated!

• Scale invariance: there is no characteristic scale for 
the fluctuation (scale-free behavior).

• Universality: exponents are independent of the 
system’s details.

CRITICAL PHENOMENA
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Divergences in scale-free distributions

If m-γ+1<0: 

If m-γ+1>0,    the integral diverges.  

For a fixed γ this means that all moments with    m>γ-1  diverge.  
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For a fixed γ this means all moments   m>γ-1 diverge.  

Many degree exponents are smaller 
than 3

 <k2> diverges in the N∞ limit!!!

 <k> diverges in the N∞ limit!!!

DIVERGENCE OF THE HIGHER MOMENTS

Network Science: Scale-Free Networks

Network N L 〈k〉 〈kin
2〉 〈kout

2〉 〈k2〉 γin γout γ

Internet 192,244 609,066 6.34 - - 240.1 - - 3.42*

WWW 325,729 1,497,134 4.60 1546.0 482.4 - 2.00 2.31 -

Power Grid 4,941 6,594 2.67 - - 10.3 - - Exp.

Mobile-Phone 
Calls

36,595 91,826 2.51 12.0 11.7 - 4.69* 5.01* -

Email 57,194 103,731 1.81 94.7 1163.9 - 3.43* 2.03* -

Science 
Collaboration

23,133 93,437 8.08 - - 178.2 - - 3.35*

Actor Network 702,388 29,397,908 83.71 - - 47,353.7 - - 2.12*

Citation 
Network

449,673 4,689,479 10.43 971.5 198.8 - 3.03* 4.00* -

E. Coli 
Metabolism

1,039 5,802 5.58 535.7 396.7 - 2.43* 2.90* -

Protein 
Interactions

2,018 2,930 2.90 - - 32.3 - - 2.89*-



The meaning of scale-free
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The meaning of scale-free
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universality
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(Faloutsos, Faloutsos and Faloutsos, 1999)

Nodes: computers, routers 
Links:   physical lines

INTERNET BACKBONE
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(γ = 3)

(S. Redner, 1998)

P(k) ~k-γ

1736 PRL papers (1988)

SCIENCE CITATION INDEX

Nodes: papers
Links:   citations

578...

25

H.E. Stanley,...
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SCIENCE COAUTHORSHIP

M: math
NS: neuroscience

Nodes: scientist (authors) 
Links: joint publication

(Newman, 2000, Barabasi et al 2001)
Network Science: Scale-Free Networks



Nodes: online user  
Links:  email contact

Ebel, Mielsch, Bornholdtz, PRE 2002.

Kiel University log files 
112 days, N=59,912 nodes

Pussokram.com online community; 
512 days,  25,000 users.

Holme, Edling, Liljeros, 2002.

ONLINE COMMUNITIES
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ONLINE COMMUNITIES

Twitter:

Jake Hoffman, Yahoo, 

Facebook

Brian Karrer, Lars Backstrom, Cameron Marlowm 2011

Network Science: Scale-Free Networks



Barabasi-Albert Model
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Organisms from all three 
domains of life are  scale-free!

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)

Archaea Bacteria Eukaryotes
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H. Jeong, S.P. Mason, A.-L. Barabasi, Z.N. Oltvai, Nature 411, 41-42 (2001)

 

Nodes: proteins                         
Links: physical interactions-binding 

TOPOLOGY OF THE PROTEIN NETWORK



C. Elegans

Li et al. Science 2004

Drosophila M.

Giot et al. Science 2003
Network Science: Scale-Free Networks



Growth and preferential attachment
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[1] A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)
Network Science: Evolving Network Models 

Barabasi-Albert model Definition
The recognition that growth and preferential attachment coexist in real networks has 
inspired a minimal model called the Barabási-Albert model (BA model), which 
generates scale-free networks [1], defined as follows:

We start with m0 nodes, the links between which are chosen arbitrarily, as long as each 
node has at least one link. The network develops following two steps:

1. Growth: at each timestep we add a new node with m (≤ m0) links that connect the 
      new node to m nodes already in the network. 
2. Preferential attachment: the probability Π(k) that a link of the new node connects to 
      node i depends on the degree ki as Π(ki)=ki∑j kj

Preferential attachment is a probabilistic mechanism: a new node is free to connect to 
any node in the network, whether it is a hub or has a single link. However, that if a new 
node has a choice between a degree-two and a degree-four node, it is twice as likely that 
it connects to the degree-four node. 



Section 4     Linearized Chord Diagram

One possible definition with self-loops

Possible evolution
paths with self-loops.
New node is red.



Degree dynamics
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γ = 3

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)
Network Science: Evolving Network Models 

Degree distribution for Barabasi-Albert model

We assume the initial m0 nodes create a fully connected graph. 
A random node j arriving at time t is with equal probability 1/N=1/(m0+t-1)  one of the nodes 1, 
2,…. N, its degree will grow with the above equation, so

for t ≥ m0+i and 0 otherwise as system size at t is N=m0+t-1 

𝑃𝑃 𝑘𝑘𝑗𝑗(𝑡𝑡)) < 𝑘𝑘 = 𝑃𝑃 𝑡𝑡𝑗𝑗 >
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽

= 1 − 𝑃𝑃 𝑡𝑡𝑗𝑗 ≤
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽

= 1 −
𝑚𝑚
1
𝛽𝛽𝑡𝑡

𝑘𝑘
1
𝛽𝛽(𝑡𝑡 + 𝑚𝑚0 − 1)

For the large times t (and so large network sizes) we can replace t-1 with t above, so 



γ = 3

A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

Degree distribution

(i) The degree exponent is independent of m.

(ii) As the power-law describes systems of rather different ages and sizes, it is expected 
that a correct model should provide a time-independent degree distribution. Indeed, 
asymptotically the degree distribution of the BA model is independent of time (and of 
the system size N) 
 the network reaches a stationary scale-free state. 

(iii) The coefficient of the power-law distribution is proportional to m2.

Network Science: Evolving Network Models 

P k =
2𝑚𝑚2𝑡𝑡
𝑡𝑡 − 𝑡𝑡0

1
𝑘𝑘3

~𝑘𝑘−𝛾𝛾
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NUMERICAL SIMULATION OF THE BA MODEL
 



Stationarity: 
P(k) independent 
of N

m=1,3,5,7 N=100,000;150,000;200,000

Insert: 
degree dynamics

m-dependence

NUMERICAL SIMULATION OF THE BA MODEL
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The mean field theory offers the correct scaling, BUT it provides the 
wrong coefficient of the degree distribution. 

So assymptotically it is correct (k ∞), but not correct in details 
(particularly for small k). 

To fix it, we need to calculate P(k) exactly, which we will do next using a 
rate equation based approach.

Network Science: Evolving Network Models 



A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

Number of nodes with degree k at time t.

Nr. of degree k-1 nodes that acquire 
a new link, becoming degree k Preferential 

attachment

Since at each timestep we add one node, we have N=t (total number of nodes = number of timesteps)

2m: each node adds m links, but each link contributed to the degree of 2 nodes 

Number of links added to degree k nodes after the arrival of a new node:

Total number of 
k-nodes

New node adds 
m new links to 
other nodes

Nr. of degree k nodes that acquire a 
new link, becoming degree k+1

# k-nodes at time t+1 # k-nodes 
at time t

Gain of  k-
nodes via

k-1 k

Loss  of  k-
nodes via
k k+1

MFT - Degree Distribution: Rate Equation
 



A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

# m-nodes at time t+1 # m-
nodes at 

time t

Add one 
m-degeree 

node

Loss  of an 
m-node via
m m+1

We do not have k=0,1,...,m-1 nodes in the network (each node arrives with degree m)
 We need a separate equation for degree m modes

# k-nodes at time t+1 # k-nodes 
at time t

Gain of  k-
nodes via

k-1 k

Loss  of  k-
nodes via
k k+1

MFT - Degree Distribution: Rate Equation
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k>m

We assume that there is a stationary state in the N=t∞ limit, when P(k,∞)=P(k)

k>m

MFT - Degree Distribution: Rate Equation
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

...
m+3  k

Krapivsky, Redner, Leyvraz, PRL 2000
Dorogovtsev, Mendes, Samukhin, PRL 2000 
Bollobas et al,  Random Struc. Alg. 2001

for large k

MFT - Degree Distribution: Rate Equation
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Its solution is: 

Start from eq.

Dorogovtsev and Mendes, 2003

MFT - Degree Distribution: A Pretty Caveat
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A.-L.Barabási, R. Albert and H. Jeong, Physica A 272, 173 (1999)

All nodes follow the same growth law

Use: 
During a unit time (time step): Δk=m   A=m

β: dynamical exponent

Network Science: Evolving Network Models 

𝐴𝐴
𝑘𝑘𝑖𝑖
∑𝑗𝑗 𝑘𝑘𝑗𝑗

= 𝐴𝐴
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𝑚𝑚 = �
𝑖𝑖

∆𝑘𝑘𝑖𝑖
𝑑𝑑𝑑𝑑

= �
𝑖𝑖
𝐴𝐴

𝑘𝑘𝑖𝑖
2𝑚𝑚𝑚𝑚

= 𝐴𝐴

�
𝑗𝑗
𝑘𝑘𝑗𝑗 = 2𝑚𝑚 𝑡𝑡 − 1 +

𝑚𝑚0(𝑚𝑚0 − 1)
2

In limit: So:



Fitness Model
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SF model:       k(t)~t ½      (first mover advantage)

Fitness model:     fitness  (η )    k(η,t)~tβ(η) 

      

        β(η) =η/C    

Fitness Model:  Can Latecomers Make It?  

time

D
eg

re
e 

(k
) 

Bianconi & Barabási, Physical Review Letters 2001; Europhys. Lett. 2001. 
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Absence of growth and preferential 
attachment
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growth                    preferential attachment

Π(ki) : uniform

MODEL  A
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growth                  preferential attachment

pk : power law (initially)  

      Gaussian  Fully Connected 

MODEL  B
 



Do we need both growth and preferential 
attachment?

YEP
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P(k)  ~ k-γ

Regular 
network
Erdos-
Renyi

Watts-
Strogatz

klog
Nloglrand ≈

klog
Nloglrand ≈

N
k

pCrand ==

P(k)=δ(k-kd)

Exponential

Barabasi-
Albert

P(k)  ~ k-γ

EMPIRICAL DATA FOR REAL NETWORKS
 Pathlenght Clustering Degree Distr.

Network Science: Evolving Network Models 



The origins of preferential attachment
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Section 9     Link selection model 

Link selection model -- perhaps the simplest example of a local or 
random mechanism capable of generating preferential attachment. 

Growth: at each time step we add a new node to the network.

Link selection: we select a link at random and connect the new node to 
one of nodes at the two ends of the selected link.

 To show that this simple mechanism generates linear preferential 
attachment, we write the probability  that the node 
at the end of a randomly chosen link has degree k as



Section 9     Originators of preferential attachments
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