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Example: COVID-19 Control

* Formally defined optimal control in the risk networks: x(k + 1) = F[x(k)] + G[x(k),E] + BU

* Established a function of controllability index and corresponding optimal energy and conditions for
nonnegative optimal control

* Provided a universal methodology of applying the LQR control in real world networked systems

* Qualitative analysis of COVID-19 governmental policies
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Optimize functions
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Contributions:

Formally defined optimal control in the risk networks:
x(k+1)=F[x(k)] + G[x(k),E]+ BU

Established a function of controllability index and corresponding optimal energy:

* Controllability index { = N/Np
Upper bound of optimal energy J, = e1°N/Np

Established condition for nonnegative optimal control: N = N

Quantitively analyzed the tradeoffs between control and state costs in Reactive and

Proactive phases:

* Reactive: cost is almost linearly related to the controlled number of active risks
Proactive: cost is proportional to the potential risk activities

Prevention is better than Governance: the cost in the proactive phase is much smaller than that

in the reactive phase

Failures, Dynamics, Evolution and Control of the Global Risk Network By World
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Contributions:

Provided a universal methodology of applying the LQR control in real world networked

systems:
Built a flight-delay network with five million flights record in 2015.

Built a delay cost matrix Q and aircraft cost matrix R according to official statistic data

Provided significant results on flights control:
LQR control saves around 90% time for the customer and 70% cost for the society on average.

In over 5000 unique flights, almost every single one benefits from the LQR control.

Provided significant results on airports control:
The small airport in the inland area benefits more than large international one in the coastal area

In over 300 airports, almost every single one benefits from the LQR control.

Discovered that the airline ranking by simulated steady states in the CARP model are highly
(above 0.8) correlated with Airline Quality Ranking.

* Submitted to:
X. Niu, C. Jiang, J. Gao, G. Korniss, and B. K. Szymanski. Data-driven control of networked risks with

minimal cost. Nature Communications, 2019
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Questions?
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Power laws and scale-free networks



WORLD WIDE WEB

Nodes: WWW documents ————
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Discrete vs. Continuum formalism

Discrete Formalism

As node degrees are always positive integers, the
discrete formalism captures the probability that
a node has exactly k links:
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Continuum Formalism
In analytical calculations it is often convenient to

assume that the degrees can take up any positive
real value:
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Low
Performers
20 Percent

High
Performers
80 Percent

Vilfredo Federico Damaso Pareto (1848 — 1923), Italian economist, political scientist and philosopher,
who had important contributions to our understanding of income distribution and to the analysis of individuals choices.
A number of fundamental principles are named after him, like Pareto efficiency, Pareto distribution (another name for a
power-law distribution), the Pareto principle (or 80/20 law).



The difference between a power law and an exponential distribution
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The difference between a power law and an exponential distribution

Let us use the WWW to illustrate the properties of the high-k regime.
The probability to have a node with k~100 is

*About  p,o =~ 107Y in a Poisson distribution
~ —4 .
*About  Pioo =10 if p, follows a power law.

*Consequently, if the WWW were to be a random network, according to the
Poisson prediction we would expect 1018 k>100 degree nodes, or none.

*For a power law degree distribution, we expect about N,. o, = 10° k>100 degree
nodes
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The size of the biggest hub

All real networks are finite = let us explore its consequences.
- We have an expected maximum degree, k

max
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The size of the biggest hub

k._=k N

max min

To illustrate the difference in the maximum degree of an exponential
and a scale-free network let us return to the WWW sample of Figure 4.1,
consisting of N =3 x10°nodes. Ask . =1, if the degree distribution were to
follow an exponential, (4.17) predicts that the maximum degree should be
k . =13.Ina scale-free network of similar size and y = 2.1, (4.18) predicts

ma
k.. = 85,000, a remarkable difference. Note that the largest in-degree of
the WWW map of Figure 4.1 is 10,721, which is comparable to k___predicted
by a scale-free network. This reinforces our conclusion that in a random
network hubs are effectivelly forbidden, while in scale-free networks they

are naturally present.



Finite scale-free networks

Expected maximum degree, k

max

*Kax, INCreases with the size of the network
—>the larger a system is, the larger its biggest hub
*For y>2 k.., increases slower than N
—>the largest hub will contain a decreasing fraction of links as N increases.
‘Fory=2 Kk, ,~N.
- The size of the biggest hub is O(N)
*For y<2 k.., increases faster than N: condensation phenomena

—> the largest hub will grab an increasing fraction of links. Anomaly!



The size of the largest hub
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The meaning of scale-free



Scale-free networks: Definition

Definition:

Networks with a power law tail in their degree distribution are called
‘scale-free networks’

Where does the name come from?

Critical Phenomena and scale-invariance
(a detour)

Slides after Dante R. Chialvo



Phase transitions in complex systems I: Magnetism
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CRITICAL PHENOMENA

« Correlation length diverges at the critical point: the
whole system is correlated!

« Scale invariance: there is no characteristic scale for
the fluctuation (scale-free behavior).

* Universality: exponents are independent of the
system’s details.



Divergences in scale-free distributions
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If m-y+1>0, the integral diverges.

For a fixed y this means that all moments with m>y-1 diverge.



DIVERGENCE OF THE HIGHER MOMENTS
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For a fixed y this means all moments m>y-1 diverge.

Network N L k) kit ko) (K) Vin Vout 14
Internet 192,244 609,066 6.34 - - 240.1 = = 3.42%
WWW 325,729 1,497,134 4.60 1546.0 482.4 - 2.00 2.31
Power Grid 4,941 6,594 2,67 - - 10.3 - - Exp.
Mobile-Phone Many degree exponents are smaller
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The meaning of scale-free

Random Network
Randomly chosen node: k = (k) (k)
Scale: <k)

Scale-Free Network
Randomly chosen node: k = <k> t oo
Scale: none



The meaning of scale-free
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universality



INTERNET BACKBONE

Nodes: computers, routers
Links: physical lines
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Network Science: Scale-Free Networks



SCIENCE CITATION INDEX

Nodes.: papers
Links: _citations
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SCIENCE COAUTHORSHIP

Nodes: scientist (authors)
Links: joint publication
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ONLINE COMMUNITIES

Nodes: online user Pussokram.com online community;
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ONLINE COMMUNITIES

Twitter: Facebook
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Barabasi-Albert Model



METABOLIC NETWORK

1DI:| — 1 IIIIIIII 1 IIIIIIII I IIIIII-: = | IIIIIIII I IIIIIIII I IIIIIE —_— |||||||| T |||||||| T T TTTTH

e N —=— B I —— ™ —e— ]

101 E oUT —&— 4 | OUT —8— OUT —8— -
J_Hlng = 4 F = ~
S0t E 1 F E E
107 1 F E E

10° B AL tulgidus
1D-|5 EEIEETT AN ETTI B AN TT) 'ETI R W R R EEETIT L
10° 10! 10 10%10° 10' 10 10° 10° 10' 10® 10°
k k k
Archaea Bacteria Eukaryotes

.22

Organisms from all three P, (k)= k

domains of life are scale-free! P, (k)= k??

H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, and A.L. Barabasi, Nature, 407 651 (2000)



TOPOLOGY OF THE PROTEIN NETWORK

Nodes: proteins
Links: physical interactions-binding
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ellular Localization View
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Growth and preferential attachment



Barabasi-Albert model Definition

The recognition that growth and preferential attachment coexist in real networks has
inspired a minimal model called the Barabasi-Albert model (BA model), which
generates scale-free networks [1], defined as follows:

We start with m, nodes, the links between which are chosen arbitrarily, as long as each
node has at least one link. The network develops following two steps:

1. Growth: at each timestep we add a new node with m (< m,) links that connect the
new node to m nodes already in the network.

2. Preferential attachment: the probability (k) that a link of the new node connects to
node i depends on the degree k; as M(k;)=k;}; k;

Preferential attachment is a probabilistic mechanism: a new node is free to connect to
any node in the network, whether it is a hub or has a single link. However, that if a new
node has a choice between a degree-two and a degree-four node, it is twice as likely that
it connects to the degree-four node.

[1] A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Possible evolution

—— - paths with self-loops.
The definition of the Barabasi-Albert model leaves many mathe-
, i New node is red.
matical details open:

» It does not specify the precise initial configuration of the first 1
m, nodes.

CAJ|M

» It does not specify whether the m links assigned to a new node P
are added one by one, or simultaneously. This leads to potential
mathematical conflicts: If the links are truly independent, they G,”

could connect to the same node i, leading to multi-links. %
or

One possible definition with self-loops g

o=

p:

k.
L iflss<t-1
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Degree dynamics



Degree distribution for Barabasi-Albert model

B
! 1
k(z‘) — ml — )8: — for t 2 my+i and 0 otherwise as system size at t is N=m+t-1
’ t, 2

A

We assume the initial m, nodes create a fully connected graph.
A random node j arriving at time t is with equal probability 1/N=1/(m+t-1) one of the nodes 1,
2,.... N, its degree will grow with the above equation, so

1 1 1
mbBt mbBt mbBt
P(ki) <k)=P|t;>—F |=1-P|t;<— |=1——
kB kB kB(t +mg—1)

For the large times t (and so large network sizes) we can replace t-1 with t above, so
OP(k,(H) <k) 2m’t 1 - 3
ok m, +tk’ ‘ 1T~ ‘

- P(k) =

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



Degree distribution

Y:; 2
l 1 _ m ti~— —
kl.(t):mt— ,6’25 P(k)_t—tok3 K ‘ b 3‘

A

(i) The degree exponent is independent of m.

(ii) As the power-law describes systems of rather different ages and sizes, it is expected
that a correct model should provide a time-independent degree distribution. Indeed,
asymptotically the degree distribution of the BA model is independent of time (and of
the system size N)

- the network reaches a stationary scale-free state.

(iii) The coefficient of the power-law distribution is proportional to m?.

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)
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NUMERICAL SIMULATION OF THE BA MODEL

100 ¢

10" © p/2m? | .
(a) We generated networks with N=100,000
107 .. and m,=m=1 (blue), 3 (green), 5 (grey), and 7
1073 ‘. (orange). The fact that the curves are parallel
Py 10% to each other indicates that y is independent
k of m and m,. The slope of the purple line is -3,
107 corresponding to the predicted degree expo-
107 .. nent y=3. Inset: (5.11) predicts p,~2m?, hence
2m(m—+1) 1077 pk/2m2 should be independent of m. Indeed,
P(k) = ’ by plotting p,/2m? vs. k, the data points shown

k(k+1)(k+2) 10" (a) e . in the main plot collapse into a single curve.
1077
10° 10 102k 10° 104

(b) The Barabasi-Albert model predicts that
p, is independent of N. To test this we plot p,
for N = 50,000 (blue), 100,000 (green), and
200,000 (grey), with m =m=3. The obtained p,
are practically indistinguishable, indicating
. that the degree distribution is stationary, i.e.
independent of time and system size.

(b)



NUMERICAL SIMULATION OF THE BA MODEL

m=1,3,5,7 N=100,000;150,000;200,000

i’ ¥ i
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FIG. 21. Mumencal simulations of setwork evolution: (a) Degres distribution of the Barabasi-Albert model, with N =g+t
= 300000 and O, mp=m=1; O, mg=m=3: & mp=m=35; and A, mg=m=T. The slope of the dashed line is =29, providing
the best i to the daia. The inset shows the rescaled distribution (see text) P{k)/2m” for the same values of m, the slope of the
dashed line being =35 (b) Plk) for mg=m =5 and varbous systens sizes, O, W= 100000 O, N = 150000 &, &= 200000 The
mset shows the tme evolution for the degree of two vertbees, added to the systerm at £ =5 and 1;= 95 Hese org=m =5, and the
dashed line has slope L5, as predicted by Eq. (81). After Barabasi, Albert, and Jeong (199497,



The mean field theory offers the correct scaling, BUT it provides the
wrong coefficient of the degree distribution.

So assymptotically it is correct (k> ==), but not correct in details
(particularly for small k).

To fix it, we need to calculate P(k) exactly, which we will do next using a
rate equation based approach.



MFT - Degree Distribution: Rate Equation

< N(k,t) >=tP(K.,1t) Number of nodes with degree k at time t.

Since at each timestep we add one node, we have N=t (total number of nodes = number of timesteps)

(k) = k = k 2m: each node adds m links, but each link contributed to the degree of 2 nodes
Z kK 2Z2Zmt
J J
Total number of
k-nodes
Number of links added to degree k nodes after the arrival of a new node: ANP(k,t) xm= gP(k,t)

Nr. of degree k-1 nodes that acquire k—1 New node adds

a new link, becoming degree k 2 P(k—11) Preferential m new links to
attachment other nodes

Nr. of degree k nodes that acquire a EP(k £)

new link, becoming degree k+1 2 >

k—1 k
(N +DP(k,t +1) = NP(k,0) + —— P(k—=10) — — P(k,1)
] ]\ ] | 2 j L2 )

I I I
# k-nodes at time t+1 # k-nodes Gain of k- Loss of _k-
attime t nodes via nodes via
k-1-> k k=> k+1

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)



MFT - Degree Distribution: Rate Equation

k—1 k
(N +DP(k,t +1) = NP(k,0)+ —— P(k—=1,0) — — P(k, 1)
] ]\ ] | 2 j L2 )

I I i
# k-nodes at time t+1 # k-nodes Gain of k- Loss of _k-
attime t nodes via nodes via
k-1= k k=> k+1

We do not have k=0,1,...,m-1 nodes in the network (each node arrives with degree m)
- We need a separate equation for degree m modes

(N +DP(m,t+1) = NP(m, 1)+ 1 —gp(m, 9
1l J 1l J

| i — | ’
|
# m-nodes at time t+1 # m- Add one Loss of an
nodesat  m-degeree  -node via
time t node m-=> m+1

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272,173 (1999)



MFT - Degree Distribution: Rate Equation

(N +DP(k,1 +1) = NP(k,1) + kz_lp(k L) — I;P(k, 9 k>m

(N +1)P(m,t+1) = NP(m,0)+ 1 —gp(m, 9
We assume that there is a stationary state in the N=t->« limit, when P(k,«)=P(k)

(N + )P (k,t +1) = NP(k,t) — NP (k,o) + P(k,0) — NP(k,o) = P(k,) = P(k)
(N + DP(m,t +1) —= NP(m,t) — P(m)

P(k) = %P(k —1)— gp(k) Pk) = %P(k ~1)  kem
2

P(m) =1-"_"P(m) P(m)=="——



MFT - Degree Distribution: Rate Equation

k—1 __k
P(k) =mP(k—1) > Pk+D= k+2P(k)
2
Py = 2
m 2m

Plm ) = P = o m+ 3
p ) m+1P L) — 2m(m+1)

) = P D = S m 3ym+ 4)
Pm+3)="Z p(m+2) = 2m(m +1) m+3 > k

m+5 (m+3)Y(m+4)y(m+5)

Pk) 2m(m +1) P(k) ~ k=3 for large k

T k(k+D(k +2)

Krapivsky, Redner, Leyvraz, PRL 2000
Dorogovtsev, Mendes, Samukhin, PRL 2000
Bollobas et al, Random Struc. Alg. 2001



MFT - Degree Distribution: A Pretty Caveat

k—1 k
Start from eq. P(k) ==~ P(k~1)~— P(k)

2P(k)=(k—1DP(k—-1)—kP(k)=—P(k—1)—kl P(k) — P(k—1)]

k)—P(k—1 P(k
2P() =Pk~ k2D e - kD
Py - L A

Its solutionis:  P(k) ~ k™

Dorogovtsev and Mendes, 2003



All nodes follow the same growth law

ok. k. . ki k;
L e TICK) = A i In limit: A - = A So:

j _zAki_ZAki _
m= idt_ i 2mt

mo(my — 1)
2

Use: Z ki =2m(t—1)+
J During a unit time (time step): Ak=m =2 A=m

ok, _ k, ok, ot j‘ak,. B Ig 5]:11[{1]:.1{1]”2
ot 2t k, 2t w ko 20 g ML 2\ M

i C
10° © ’ ]
\’ r ..- -"”’
ki(t) = m| — ﬁ: — 2 [ e
1 .
t- 2 10 = a ’,—"’ |
1 e
B: dynamical exponent .
101 102 103 104 105
z

A.-L.Barabasi, R. Albert and H. Jeong, Physica A 272, 173 (1999)
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Fitness Model: Can Latecomers Make It?

SF model: k(@®~t”  (first mover advantage)
n. k.

Fitness model: fitness (1) Tl(k)= k(n,t)~tP0V
Z ,

A B(n)=n/C
<
:
)
~

o

time
Bianconi & Barabasi, Physical Review Letters 2001; Europhys. Lett. 2001.
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» The degree of each node increases following a power-law with the
same dynamical exponent 8 =1/2 (Figure 5.6a). Hence all nodes follow
the same dynamical law.

* The growth in the degrees is sublinear (i.e. 8 < 1). This is a consequence
of the growing nature of the Barabasi-Albert model: Each new node has
more nodes to link to than the previous node. Hence, with time the ex-
isting nodes compete for links with an increasing pool of other nodes.

« The earlier node i was added, the higher is its degree k.(t). Hence, hubs
are large because they arrived earlier, a phenomenon called first-mov-

108 10¢  eradvantage in marketing and business.
¢ The rate at which the node i acquires new links is given by the deriva-
tive of (5.7)
N=10°8
. dk,(t) m 1

. (5.8)

. a2 Jir

indicating that in each time frame older nodes acquire more links (as

they have smaller t). Furthermore the rate at which a node acquires
links decreases with time as t/2. Hence, fewer and fewer links go to a
node.

10° 10" k 10% 10° 10*



Absence of growth and preferential
attachment



MODEL A
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—grewth_ preferential attachment

HODELE
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Do we need both growth and preferential
attachment?

YEP



EMPIRICAL DATA FOR REAL NETWORKS

s — Pathlenght .. Clustering Degree Distr.
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The origins of preferential attachment



Link selection model -- perhaps the simplest example of a local or
random mechanism capable of generating preferential attachment.
(a) NEWNODE

Growth: at each time step we add a new node to the network.

one of nodes at the two ends of the selected link.

To show that this simple mechanism generates linear preferential
attachment, we write the probability that the node (b)

Link selection: we select a link at random and connect the new node to ‘I.
at the end of a randomly chosen link has degree k as ‘

qr = Ckpy ‘ ‘

In (5.26) Ccan be calculated using the normalization condition 2q, =1, .
obtaining C=1/ (k). Hence the probability to find a degree-knode at the end
of arandomly chosen link is

kp, , (5.27)
(k)

q, —



Section 9 Originators of preferential attachments

Rk

In An Informal Theory of the Statistical 19573 2 -
Structure of Languages [26] Benoit
Mandelbrot proposes optimization as the 1955 |7 Ona Class of Skew Distribution Functions
arigin of power laws. Herbert Simon [6] proposes randomness
&s the origin of power laws and dismisses
l Mandelbrot’s claim that power law are
rooted in optimization.
e Simon's model is analytically circular...
comment on Simon’s paper [27]
writing: 739
Benoit
Dr. Mandelbrot's principal and mathemati- 7 The essence of Simon's lengthy
cal objections to the model are shown to be reply & year later is well o
unfounded summarized in its abstract [28].
1960 w7
Herbert
In & 19 page response entitled ...Most of Simon's (1960) reply was irrelevant.
Final Note, Mandelbrot @ @ 1941
states [29]:
Benoit This present ‘Reply’ refutes the almost 7 Simon's subsequent Reply to
entirely new arguments introduced by Dr. e ‘Final Mote’ by Mandelbrot o
Mandelbrot in his “Final Note"... does not concede [30]
1961 \Jﬁ
. Herbert
In the creatively titled Post My criticism has not changed since I first
o Scriptam to Finat Ngle had the privilege of commenting upon a
Mandlebrot [31] writes draft of Simon. & g\
1941
Benoit

Dr. Mandelbrot has proposed a new set of
objections to my 1955 models of Yule 7
distributions. Like earlier objections, these

are invalid. 1961 o

Simen’s final reply ends but
does not resolve the debate [32]

Herbert



MILESTONES
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1945

I

DATE

Gydrgy Pélya
POLYA PROCESS
MATHEMATICIAN

George Udmy Yule

YULE PROCESS
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1923 1925 1931 1935 1941

George Kinsley Zipf
WEALTH DISTRIBUTION
ECONOMIST

PROPORTIONAL GROWTH

Herbert Alexander Simon

MASTER EQUATION
POLITICAL SCIENTIST

Robert Gibrat
ECONOMIST

1950 1955 1960

1968

L

Robert Merton

MATTHEW EFFECT
SOCIOLOGIST

Derek de Solla Price

CUMULATIVE ADVANTAGE
PHYSICIST

1970 1976 1980 1985

20

Albert-Lasz|ld Barabasi & Réka Albert

PREFERENTIAL ATTACHMENT
NETWORK SCIENTISTS

XXI

+._._
1999 2005

1990 1995
2000

|

Gydrgy Pélya (1887-1985)
Preferential attachment made its
first appearance in 1923 in the
celebrated urn model of the
Hungarian mathematician Gydrgy
Pélya [2]. Hence, in mathematics
preferential attachment is often
called a Polya process.

George Udmy Yule (1871-1951)

used preferential attachment to
explain the power-law distribution of
the number of species per genus of
flowering plants [3]. Hence, in
statistics preferential attachment is
often called a Yule process.

!

Robert Gibrat (1904-1980)
proposed that the size and the
growth rate of a firm are indepen-
dent. Hence, larger firms grow

this is a form of preferential
attachment.

George Kinsley Zipf [1502-1950)
used preferential attachment to
explain the fat tailed distribution of
wealth in the society [5].

faster [4]. Called proportional growth,

|

Herbert Alexander Simon (1916-2001)
used preferential attachment to
explain the fat-tailed nature of the
distributions describing city sizes,
word frequencies, or the number of
papers published by scientists [6].

Derek de Solla Price (1922-1983)

used preferential attachment to
explain the citation statistics of
scientific publications, referring to it
as cumulative advantage [7].

Robert Merton (1910-2003]

In sociology preferential attachment
is often called the Matthew effect,
named by Merton [8] after a passage
in the Gospel of Matthew.

Barabasi (1967) & Albert (1972)
introduce the term preferential
attachment in the context of networks
[1] to explain the origin of their
power-law degree distribution.
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